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ABSTRACT 

Internal filamentary glass daircge caused by high pc >r Q-switched 

pulse lasers and filamentary trapping in liquids is analyzed theoretically 

In this report.  Several models are proposed and discussed for electrostrictively 

driven acoustic trapping.  An analysis of Kerr effect trapping is also given 

for purposes of comparison. 

In the acoustic theory, eiectrostriction is the sound wave driving 

force. The sound wave compressions cause focusing of the light wave fields. 

The focused light fields in turn cause stronger eiectrostriction forces. When 

the beam power is large enough and the laser pulse duration is approximately 

equal to the time required for sound to cross the unfocused beam radius, the 

trapping process runs until the beam is focused to a small radius limited by 

diffraction. 

The theoretical trapping thresholds are calculated from the laser 

wavelength and the density, refractive indux. Young's modulus, and Poisson's 

ratio of a solid material, or the denaity, refractive index, and speed of sound 

of a liquid medium. These thresholds agree with experimental glass damage 

thresholds to within experimental error, and they vary the same way with 

Initial beam size.  Computer movies showing the formation of strongly focused 

regions are presented. An explanation Is given for most of the salient features 

observed in the damage phenomenon. Mathematical analyses of various features 

of the models are presented with computed graphs. 
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SECTION I 

PREFACE 

The goal of the research reported here is to continue the develop- 

ment of a theory of acoustic beam trapping.  The theory is a possible explana- 

tion of the mechanism for Internal, filamentary glass damage by lasers.  It 

may also be an explanation for some of the beam-trapping phenomena observed in 

liquids when they are traversed by a high Intensity laser pulse. 

We began developing the theory In 1965.  Sections II and III pre- 

sent theoretical results obtained by August 1966. 

Section IV covers an analytical solution to the beam-trapping equa- 

tions for the case in which Kerr effect trapping is the dominant trapping mech- 

anism and where electrostrtctlvely driven sound waves are weak or absent. 

Section V presents some of our computer results, depicting tha 

acoustic beam-trapping phenomenon. An explanation of the salient features of 

the glass damage phenomenon is given. 

Section VI presents derivations of formulas used in the computer 

programs.  It is the summary of work performed l.i the second half of the contract. 
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SECTION II 

INTRODUCTION 

2.1 A NEW POWER LIMIT 

As higher and higher power lasers are developed, basic limitations 

in the power-transmit ting capability of materials and propagation media are be- 

ing discovered. Examples of limitations are electric breakdow . and beam insta- 

bility.  During our study of gain saturation and other anomalies in stimulated 

Raman effect and in our experimental work in laser damage to glass, we have 

identified a new kind of beam instability, acoustic beam trapping. 

Acoustic beaui trapping is caused by the focusing action of electro- 

strictively driven acoustic waves.  These waves alter the index of refraction 

of the n.edium by the density changes they cause.  All optical materials experi- 

ence these electrostriction forces and photoelastic effects. 

Acoustic beam trapping sets upper limits to beam power that can be 

transmitted in important materials such as glass and air.  Furthermore, the 

scaling laws for acoustic trapping (power threshold versus beam size and pulse 

half-time) differ from the scaling laws for other types of beam instability, 

such as Kerr effect or anomalous dispersion trapping.  In fact, for many trans- 

parent materials, there is a beam size and pulse half-time for which the acoustic 

trapping threshold is lower than the thresholds for other known instabilities. 

2.2 THRESHOLD PREDICTABLE 

At the present time, we can predict the acoustic trapping power 

threshold in glassy materials from a knowledge of material properties, wave- 

length, pulse half-time, and beam size. There is a minimum power level 

for each material which can be calculated from tabulated material properties 

and the laser wavelength. 
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2.3 RECONCILABLE WITH STEADf STATZ TRAPPING THEORY 

We have also shown that for any given beam size and type of material, 

there is a maximum aveiage rate of increase of power that: can be transmitted 

vicnout causing acoustic beam trapping. So long as power is a.ied to a beam at 

a slower rate than this, it is nossible in principle to reach the steady state 

trapping threshold predicted b> Chiao, Garmire, and Townes (Ref. 1). 

2.4 SCALING LAWS 

Figure 1 ill istrates tha scaling laws for three different effects 

that limit the ability of an optical material to transmit a laser bewn.  In 

tha graph, total beam power is plotted versus bean radius on log-log scales. 

The three effects are electric field breakdown, Kerr effect trapping and acous- 

tic trapping. 

For electric field breakdown, as in laser-induced "air sparks," 

Power Threshold   r  C nstant for "V r  Beac "N 
for Breakdown    N  Material J   NRadiua/ 

On the log-log plot, this power threshold Is a line with a slope of 2. Thus, 

electric field b re ".'down limits the material to transmission of power levels 

and beam sizes in the right-hanJ portion of the graph. 

For Kerr effect trapping, as shown by Chiao, Garmlre, and Townes 

(Ref. 1) 

Power Threshold for     ,„  .  _. . /"Constant for "S 
Kerr Effect Trapping ' (W£ elea8th) ^ Material ) 

Sinca the threshold is independent of beam size. It appears as a horizontal line 

on tha graph. For transmission without Kerr effect trapping, the beam power 

level must be below the Kerr effect threshold. 

Together, Kerr effect trapping and electric field breakdown limit 

beam transmission to beem sizes and power levels in the lower right portion of 

the graph. Br h of the effects are virtually independent of the pulse half- 

time. 
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w        lOw 

Beam Size w 

Figure 1 . Scaling Laws for Kerr Effect Trapping, 
Breakdown, and Acoustic Trapping. 
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The acoustic trapping threshold  in be calculated as in Section III 

as long as the laser pulse half-time, p, is less than the time required for 

sound to cross the beam radius. The scaling law for acoustic trapping is 

2 
Power Threshold for _  ,       . .2 / Constant for >   (Beam Radius) 
Acoustic Trapping  "'  (.waveiengtn; ^  Materiai J    (puiSe Half-time)

2 

for the limiting case of a vc y short pulse or a very large beam.  If the pulse 

half-time is held constant, the threshold power can be plotted vttsus beam size 

as shown in the graph. The acoustic trapping power threshold curve flattens out 

at the bottom, at the minimum power level. This minimum power level, P . , is 
min 

characterise only of the material and the wavelength. 

For the domain in which the pulse half-time is longer than the time 

T required for sound to cross the beam, the acoustic trapping threshold remains 

at P  . This power level can be exceeded only if the power does not increase 

more rapiily than P . /T in any time T. r 3 nun 

If the pulse half-time is increased by a numerical factor, and the 

beam radius is increased by the same factor, the power threshold remains con- 

stant. Thus, in the log-log graph, the curve is shifted to the right by the 

log of the numerical factor by which the beam radius is increased. Thus the 

graph shows three extra curves shifted by factors of 10, 100, and 1000. 

In some materials the Kerr effect trapping threshold is lower than 

the minimum power level for acoustic trapping.  In these materials Kerr effect 

trapping will occur before acoustic trapping. However, most common optical 

materials have a critical power level lower than the Kerr effect trapping thresh- 

old. For these materials there will always be a domain of beam size and pulse 

half-time in which acoustic bean, trapping sets the maximum transmittable 

power for the material. 

2.5 TYPICAL RESULTS FOR CUSS 

Acoustic trapping is an important caude of laser damage to optical 

glass, as shown in experiments perfomed by Steinberg, Atwood, Lee, and Ward 

(Ref. 2). The theoretical trapping threshold is compared with the experimental 
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damage threshold in Figure 2. Generally, the trapping threshold is below the 

experimental damage threshold points, as expected. In particular, note the 

experimental damage threshold curve for dense flint. The left, lower portion 

has a slope of 2.  In that region, the cause of damage is probably electric 

breakdown. The right, upper portion fits the curve for acoustic trapping to 

within the experimental repeatabilit/ and it scales the same way.  For fused 

silica and BK-7 the agreement between the acoustic trapping threshold and the 

measured damage threshold is even better. 

The experimental results are not attributable to Kerr effect trap- 

ping because of the dependence on beat size. Also, in glass, Kerr effect is 

so weak that the power threshold for Kerr effect trapping is A megawatts, which 

is above the top of the graph. 
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SECTION III 

DERIVATION OF THE ACOUSTIC 
BEAM TRAPPING THRESHOLD 

3.1 THE DRIVING FORCE 

Electrostrictlon is the force exerted by an electric field on a 

material medium, when the force is proportional to the square of the field. 

The net body forci: is then proportional to the power intensity gradient, in 

a lossless medium.  The relevant permittivity ratio at optical frequencies is 

the square of the refractive index.  Thus, the net body force f per unit 

volume due to the light büam is (Ref. 3) 

f    =     (l/6noc) (n^ + 2) (n^ - 1) " I. 

Thus a cylindrical beam will J'ive a radially propagating sound wave. 

3.2 THE PHOTOELASTIC EFFECT 

The refractive index change ^n due to small acoustic compressions 

is defined as 

An = n - no = (p - pj   'm/^p 

Assuming constant polarizability per molpcule, ^n/^n may  be calculated by 

differentiating the Clausius-Mosotti relation. Then we obtain 

in = (1/6 no)(n^  2) (n^ - 1) a 

where o  is the normalized compression. 
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Other effects, such as the Kerr effect, may add to ^n.  They will 

not have the same distribution as acoustic compression, in general, nor will 

they vary the same way with beam size.  However, they can be added to An later. 

Let us ignore them for the present. 

3.3 THE LASER BEAM 

For the purpose of this discussion, the laser pulse is represented 

by two impulses of equal energy.  Each impulse has a Gaussian radial intensity 

distribution.  The radius is measured to the point where the intensity drops 

to 1/e of the peak intensity.  Tne beam is circularly symmetrical and gently 

focused.  At the focvs the intensity distribution is 

I(r,t) = (W/* w2) exp (-r2/w2)[6 (t) + 6(t-At)1 II 

where W is the energy of two Impulses. The two impulses are separated by a 

time. At, equal to 2/3 the half-height duration or half-time, p, of the laser 

pulse. Thus if the physical laser pulse has a Gaussian time distribution, the 

two impulies will occur at the centroida of the two halves of the physical pulse. 

The temporal intensity distribution is shown in Figure 3, and the 

spatial intensity distribution is sketched in Figure 4. The resulting force 

distribution is given in Figure 5. 

3.4 THE ACOUSTIC WAVE 

The electrostrictive force dri.-as a radially propagating acoustic 

wave.  Usually when acoustic beam trapping occurs the boundaries of the mate- 

rial are so far from the beam center that the trapping event occurs sooner 

than sound can be reflected from the boundaries. Hence, the acoustic wave 

equation applies with the following conditions: 

1) Circular symmetry 

2) Infinite homogeneous Isotropie medium 

3) Solution-at the beam center is well behaved 

4) Solution at infinite radius is zero 

5) Solution is not a function of z (paraxial beam case) 

10 
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Gaussian Temporal 
Intensity Distribution 

Two-Impulse 
Approximation 

Half-height 
Duration 
or Half-time p 

Figure 3. Laser Pulse Temporal Intensity Distribution, 
and the Two-Impulse Approximation. 

11 
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Figure 4. 

Gaussian Spatial Intensity 
Distribution 

Figure 5. 

Initial Force 
Distribution 

Figure 6. 

Initial Rate of Change 
of Compression Distribution 

Figure 7^ 

Hankel Transform of 
Initial Rate of Change 
of Compression 

Figure 8. 

Acoustic Compression at 
T = 0.596. Proportional 
to Refractive Index Change 

12 
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The acoustic wave equation can be solved for the case of an impulse 

driving force.  Lince the equation is linear, it is convenient to use dimen- 

sionless variables and a normalized impulse. 

Let the dimensionless radial coordinate be x, the radius measured 

in units of the initial focused beam radius w; 

x = r/w 

There is a characteristic acoustic response time, T, equal to the time re- 

quired for sound to traverse the beam radius; 

T = w/v 

where v is the speed of sound for a two-dimensional compression wave. 

v = (Y/2po)
1/2 (1 - f)-

1/4 (1) 

Here Y is Young's modulus and e is Poisson's ratio for solid media. 

T°t the dimensionless time variable be T,   time measured in units of T. 

T = t/T = (v/w) t 

This choice of units makes the velncitv of sound equal unity in 
* 

the wave equation.  Also, the acoustic velocity u is normalized by the velocity 

of sound, and the acoustic displacement u is normalized by w.  The acoustic 

compression o  is the negative divergence of the displacement: 

a = - 7 ■ Ü 

where U = u/w.  Differentiating with respect to f,  we have 

where ^U/^r = u/v 

13 
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Ths initial rate of change of compression distribution appears in 

Figure 6. 

When the electrostrictive force acts impulsively on a medium Ini- 

tially at rest, there is no immediate displacement or compression. The Ini- 

tial velocity and initial rate of change of compression may be deduced from 

conservation of momentum, 
o+ 

The compression a is a function of radius and time only. To sum 

up, the problem is to solve the acoustic wave equation: 

2      2,2 

subject to 

1) a   - a(x,T) 

2) a(x,0) = 0 

3) da(x,0)/^r = A(l - x2) exp (-x2) 

where 

A =  ( w/3irnocvoow
3) (n* + 2) (n* - 1) 

4) a (0,T) ^oc 

5) afcc , T) = 0 

The equation and all of the conditions except (3) are satisfied 

by Q  (x, T) = (B/A)J (yx) sin (yr) where B and y are arbitrary,, A linear 

superposition of solutions will satisfy condition (3) as well. The correct 

combination of solutions g(y) is given by the Hankel transform (not the 

Fourier transform because of circular symmerry). The weight function is x 

14 



PERKIN-ELMER 
Report No. 9204 

and the eieenfunctions are J (yx) corresponding to 1 and sin (xy) or cos (yx) 
o 

for a Fourier transform. Thus, 

8(y) = f i hd - ^2) exp (-42) 1 J (4y)d4 
' o  • o 

2 2 
= A(y /ö) exp (-y /A) 

This distribution is plotted in Figure 7.  Now superposition is 

applied to obtain the solution. 

C "* 2 2 
a(x,T)  = A I  (y /8)   exp (-y /4) J (yx) sin (yr) dy 

' o 

This difficult integral has been evaluated numerically as described below. 

For the important on-axis case, where x = 0. the integration may be performed 

analytically, since J (0) = 1. 

w 

a(0,T)  = A f (y2/8) exp (-y2/4) sin (yr) dy 

= A T/2 + (A/2) (1 - 2T2) exp (-j2) r exp (^ ) d^ 
' o 

= A (T- 4T3/3 + - - -) 

This function is plotted in Figure 9. 

3.5 THE NUMERICAL INTEGRATION 

The integral for a(x> t) was computed in our Scientific Computer 

Facility. We programmed the Scientific Data Systems 9300 Computer with 65 

Fortran IV statements.  Simpson's method was used.  The Bessel function was 

generated by a polynomial approximation accurate to 5 x 10  absolute error 

from the Handbook of Mathematical Functions (Ref. 4.rp») 3':9f).  One hundred 

and ons values of y were used each time the integral w<»s evalutated.  The In- 

tegral was computed et 101 values of x for each of 124 values of T. Time was 

saved by storing parts of the kernel that do not change, and by buffering the 

printer. Running time was about 40« minutes, or about 1 millisecond for each 

evaluation of the Bess«! function. 

15 
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The computed points were saved on magnetic tape.  We displayed the 

points wi h the on-line oscilloscope associated with our SDS 930 Computer. 

The Fortran II display program allowed us to show stationary frames continu- 

ously, or to show frames sequentially at any comfortable viewing rate.  The 

display was useful in studying the wave motion and in checking the computatl n. 

Refer to Figures 10 and 11 for plots of wave amplitude a/A versus 

x at various values of r.  The rumpression at maximum on-axis amplitude is 

plotted in Figure 8, for comparison with the other functions in the solution. 

3.6 THE TRAPPING CONDITION 

An unexpected result of the computed solution of the acoustic wave 

ij the fact that the compression is gre?test or. axis, for 0 ■ 7- ■- 0.85.  Thus, 

it is, from the start, a focusing distribution.  There is no latency period of 

zero or negative focusing before some positive focusing begins.  The on-axi.; 

solution shown in Figure 9 shows that the convergence (reciprocal focal length) 

varies lir^arly with 7, for r « 1. 

The two-impulse model is valid for T < 0.85.  The first impulse 

starts an acoustic wave, and the acoustic wave builds up a distributed lens 

of increasing convergence.  Diffraction of the second impulse will be defeated 

if, at the time the second impulse occurs, 

An/n >  (l/2)(\/2:m w)2. 
o 

This on-axis /,n will be the sum of An caused by the acoustic wave and Kerr 

effect.  The acoustic in is a function of beam energy, pulse duration, and ini- 

tial focused spot size. Kerr effect depends on power. Thus the two effects do 

not vary ehe same way with beam size. 

3.7 THE TRAPPING THRESHOLD 

For optical glass and o;her materials in which Keir effect is weak, 

we may calculate the approximate energy threshold for trapping by equating the 

17 
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Figure 10.  Sound Wave Ccupression at Various Times 
After an Initial Impulse 
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required axial £in with Lhe An due to the acoustic wave. 

„     9c\2 r     "o Pc  I vw^ 
TRAP " 4„  L (n2 + 2)2(n2 _ ^2  a/A 

We may define the power for the impulse pair as 

P = W/at = 3W/2P . ^ 

and substitute T m  w/v so the trapping power becomes 

Q ,2 -       n p      n      2 
9c\ j  o o  |    v 

Report No. 9204 

PTRAP " 4n L (n2 + 2)2(n2 . ^2 J (2P/3T)(o/A) 

The minimum trapping power x^ill be required when the pulse half-time is such 

that (2p/3T) (o/A'i is a maximum. This maximum is .261, and it occurs ivhen p = 1.22T 

PMTM = 8.64c\
2 n p v2/rn(n2 + 2)2(n2 - I)2 1 

MIN oo   Lo      o      i 

This minimum power depends only on the material properties and the wavelength. 

The beam size must be matched to the pulse half-time as follows: 

p = 1.22T = 1.22 w/v 

w      = .82 pv 
matched     r 

For values of p/T «1, a/A 2: 2p/3T. 

Hence in the limit of short pulses or large beams, 

2 2 
PTRAP varies as w /p . 

20 
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3.8 NUMERICAL CALCULATIONS 

The acoustic trapping threshold curve for a material ran be ob- 

tained with simple calculations.  It is only necessary to obtain the sound 

velocity, the beam size that matches the pulse half-time, and the minimum 

power level.  Then simple graphical methods yield the threshold curve. 

Sound Velocity:  The relevant sound velocity is that for a radially 

propagating compressional wave.  For solids, use equation (1) in Section 3.4. 

The Young's modulus, density, and Poisson's ratio ror glasses are found in the 

newer Schott glass catalogs. 

2 3 
Example:  For BK-7, Y = 8310 kp/mm , p = 2.51 g/ctn , f =0.208. 

3 
Multiply p  by 10  to obtain the density in kilograms per cubic meter, and Y 

by 9.81 x 10  to obtain newtons per square meter from klloponds per square 
3 

millimeter.  Hence v = 4.27 x 10 meters per second. 

Matched Beam Size:  Let the pulse half-time p be measured at 

the half-peak points.  Then w   . . = .82 pv. 
matched      r 

Minimum Power Level   The minimum power level for the material 

is 

9 2r2 22 2  ~\ 
P

MTM    =     (8.64c\Vjr)    pv n/ ! (n    + 2)%/ -  1)      ! MIN O  L  o        o 

Example:  For BK-7, at \ = 694.3 nm, n = 1.45, The critical 

power level is 365 kilowatts. 

Plotting the Threshold;  Use log-log graph paper having equal size 

divisions for the horizontal and vertical scales.  Draw a horizontal line 

corresponding to the minimum power level.  Mark the matched point on the 

minimum power line, corresponding to the matched beam size. 

For a quick, conservative overestimate of the trapping threshold 

curve, simply draw a line with a slope of 2 upward from the matched point. 

(The angle is 63.5° to the horizontal.) 
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I 
For an accurate graph, plot the curve In Table I on a second 

piece of log-log paper.  Lay the first piece over the second so the axes are 

parallel and the matched point is just over die bottom point on the second 

graph. Trace the curve. 

TABLE I 

NUMERICAL VALUES USEFUL FOR 
PLOTTING ACOUSTIC TRAPPING THRESHOLD CURVES 

Horizontal Axis Vertical Axis 

0.91 

1.00 

1.10 

1.25 

1.43 

1.68 

2.00 

2.50 

3.33 

5.00 

10.0 

0.965 

1.00 

1.05 

1.20 

1.43 

1.78 

.■J6 

3.48 

5.90 

12.8 

55.0 
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SECTION IV 

AN ANALYTICAL SOLUTION OF THE LASER BEAM 
RADIUS EQUATION FOR KERR EFFECT TRAPPING 

A high intensity laser beam passing through a material medium can 

focus itself into a long, thin filament and propagate without normal diffrac- 
i 

tion spreading.  This self-trapping phenomenon arises when the medium's re- 

fractive index n is higher along the beam axis than along the beam edges. 

Such refractive index distribution acts like a series of thin positive lenses, 

c> shown in Figure 12. 

The high intensity beam can set up a focusing refractive index 

distribution by several physical mechanisms, such as electrostriction. anom- 

alous dispersion, and reorientation of molecular dipol? moments..  The last 

effect is Kerr effect, after its discoverer, John Kerr (1824-1907).  In 

liquids the molecular reorientation can occur in times on thp order of 10 

picoseconds. The effect is thus virtually instantaneous compared with the 

duration of nanosecond laser pulses, but it is much too slow to follow 500 

terahertz light wave fields.  The local change in index of refraction is 

proportional to the local beam intensity. When the beam power is above a 

certain threshold power level, the laser beam focuses itself to a smaller 

beam size and higher intensity. The smaller, higher intensity beam causes 

still stronger self-focusing until the beam has trapped itself at a small 

radius, limited by diffraction. 

4.1 THE BEAM RADIUS EQUATION 

This note sets forth an analysis of Kerr effect trapping. The 

analysis is based on a ray tracing equation published by Tien, Gordon, and 

Whinnery (Ref. 6). Equation (9) in that article reduces to 

2   2-3       2        2 ' 
9 a/^z =a  (\/2^no)  + (a/no) ?» n(0, z, t)/^r" (2) 
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where 

a(z,t) = beam radius to the point where the intensity is 

1/e of the peak intensity, 

n(r,z,t) a local index of refraction 

n = undisturbed or nominal index of the medium 
o 
\ s vacuum wavelength of the laser beam, 

r,z = cylindrical coordinates for the beam. 

For this equation to be valid Tien. Gordon, and Whinnery require 

that 

1) "the light beam is...launched with a Laguerre-Gaussian 

or Hermite-Gaussian field distribution" 

2) "tho refractive index of the medium varies slowly in space 

(negligibly in an optical wavelength)" 

3) the variations in n arc small comnared with n 
o 

The last two restrictions are violated when the beam is trapped 

to a filament with approximately one wavelength radius, and the scattered 

light is spread over a wide wavelength range.  However, the equation can be 

used to study the collapse of the beam toward the trapped condition, and to 

study the phenomenon when the beam power is below threshold. 

U.l    BEAM PROPAGATION WITHOUT SELF-FOCUSING 

When the beam intensity is weak, the last term in equation (2) 

is negligible. The ray paths are then hyperbolas. The beam radius solution 

is 

2 2-> 1/2 
a(z) = I (a + a s)  +■ (\z/27tn a ) | (3) 

[_ o   1 o o J 

where a and a, are, respectively, the initial radius and initial slope of the 
o     1 

rays just after entering the medium at z = 0.  For example, let \ --  lam, 

n = 1.5, a -  O.lmm, a, = -0.001839. Then the beam is focused to a radius of 
o       o 1 

0.05mm at z = 4.1cm.  This is the case of a very gently focused beam.  The 
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first frame of Figure 14 shows a plot of a(z) for this case . Note that the 

vertical, radius scale is greatly exaggerated. 

4.3 THE LASER BEAM INTENSITY EQUATION 

The lowest order mode for the laser beam has a nearly Gaussian 

intensity profile characterized by the radius, a, to the point where the 

intensity drops to 1/e of the peak intensity. If the propagation medium is 

not too violently inhomogeneous and if the inhomogeneity is radially sym- 

metrical, the Gaussian profile is maintained along the beam, although the 

beam radius varies because of diffraction and focusing by the inhomogene!ties. 

The laser power may also vary as a function of time.  For Q-switched 

pulse lasers generally the pulse energy can be measured and some rough idea of 

the time distribution of the pulse can be obtained. For purposes of analysis 

we can use a simple pulse shape such as the unit quartic pulse shown in 

Figure 13. This shape has a continuous derivative and finite extent. 

Thus the laser beam intensity is 

2       2 2 
I(r,z,t)  =  (W/na ) exp (-r /a ) q (t;p) 

where W is the pulse energy and q(t;p) is the unit quartic pulse of time 

constant p: 

j a5/16p) (t/p)2(2-t/p)2, 0 fi t < 2p e otherwise. 

Of course, a is a(3,t) given by the solution of equation (2). The intensity 

distribution is so normalized that 

r2lt    c "       r * 
J      de   |     r dr   i    dt I  (r,z,t)    = W 

o o ' -• 

independent of the value of z. 
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i/p  q(t;p) 

15/16p 

15/32 p 

llp/16   P   21p/16 

q(t;p) 
(15/16p) (t/p)2(2-t/p)  for 0 < t s 2p 
0 otherwise 

q(t;p) dt = 1 

Figure 13,  bnit Quartic Pulse 
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4.4 VARIATION OF REFRACTIVE INDEX WITH INTENSITY 

The change in refractive index can be expressed in cgs units as 

2   2 
n = n + — \JE +   

3 

where J is the high frequency Kerr constant due to molecular rotation.  Thus 

the change in index is proportionil to the local intensity for either a plane 

polarized or circularly polarized oeam (although the constants of proportion- 

ality differ for the two cases). Let the constant of propor ionality be K, 

depending on the wavelength, the material, and the beam polarization. 

n(r,z,t)  = no + KI (r^t) 

In equation (2) the last term becomes 

-a'3(2 KW/nn ) q (t;p) 

Since both tetus on the right of equation (2) are proportional to 
-3 

a  , the solution au any time will be a hyperbola whose value and slope at 

z- 0 are a and a , respectively. However, the focal point and semiaxes of the 

hyperbola may vary with time.  The equation becomes 

2   2      -3 
§ a/>z - f(t)a J 

where 

f(t)  = (\/2.ino)
2 - 2KWq(t;p)/nno. 

The solution is 

1/2 

o 
i(z,t) - IV + a z)2 + f( 

u    1 

.-221 
t) a  z  ' 

A negative, zero or complex value of a would be a non-physical 

solucion.  This^ places a restriction on the minimum value of f(t) which occurs 
2 

when t = p. We have a (z,p) equal to a quadratic expression i. z.  In order 

that a (z,p) be greater than zno for all real values of ü, the discriminant 
2 

of the quadraclc. expressior must be negative. Then the only zeros of a will 
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be complex.  This condition implies th-t f(t) must always be positive.  The 

minimum value of f(t) occurs when t=p, i.e., at the peak of the laser pulse. 

For a valid solution we must have 

1        2 
n/n < -r (\/2:n  a) 

~  o  z      o 

where ^n, the on-axis increase in refractive index, is 

£n = KWq(p;p)/!ta . 

This condiiion is equivalent to the Pierce stability criterion L/f <  4. where 

L and f are the spacing and focal length of lenses in a sequence (Ref. 5). 

2 
The threshold value of KW/p becomes (KW/p)        = 2\ /m 

threshold 
Let k be the fraction 

k= (KW/p)/(KW/p)threshold 

Then f(t) becomes 

f(t) = (\/2rno)
2 [l-kq(t;p)/q(p;p)] 

Refer to Figure: 14 through 16 for plots of the beam radius when k = 0.999. 

0.95, an' 0.85, 
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Time 

12.5 cm 

Figure 14.  Kerr Effect Trapping at 99 Percent Threshold 
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= -0.001839 

12.5 cm 

Figure 15.  Kerr Effect Trapping at 95 Percent Threshold 
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Time   \ = lum, n = 1.5, a = lOO^m, a = - 0.001839 
0.0p        o      o        1 

lOOmn 

0.2p 

0.4p 

0.6p 

■3 

'S 

0.8p 

1.0p 

12.5 cm 

Figure 16. Kerr Effect Trapping at 85 Percent Threshold 
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SECTION V 

BEAM TPACING IN THE ACOUSTIC TRAP 

I 
j 

The theory, developed from the two-impulse model in Sections IJ. 

and in. yields a threshold for acoustic beam trapping which is below the ex- 

perimental damage chreshoids for the glassy materials tested.  It was solved j 

by completely analytical means, using tabulated properties of special functions. 

The computer was only used to obtain values for the radial sound wave off the 

axis of the beam.  That computation was not essential to the solution, although 

it did give the following important insight:  The refractive index distribution 

set up by the acoustic wave is initially a focusing distribution, although its 

strength varies with time.  However, the theory did not ^Llow for the continuous 

interaction of light and sound, nor did it show how the focusing action develops 

with time. 

5.1  OTHER FEATURES OF THE GLASS DAMAGE PHENOMENON 

A complete theory shouTd also explain the other observed features 

of internal, filamentary glass damage, such as the following: 

1) The Spectrum of the Side-Scattered Light 

A white light flash is seen when the damage event occurs. 
D C 

Ruby laser light may be shifted from 6943A down to 4000A. 

Such large shifts can only be explained by a very strong 

dynamic refractive index change. 

2) Starting Location of the .Damage Track 

Even if the laser is focused at the entranre face of the 

gla ,s sample, the damage track never begins at the entrance- 

face.  There is always a short interval between the entrance 

face of the sample and the start of the track. 
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3)  Exit Face Pitting 

Usually the track ends in a pit on the exit face of the 

glass sample.  As a matter of fact, the threshold for the 

exit face pitting appears to be a little lower than the 

threshold for track formation.  Nevertheless, the phenomena 

is different from the type of surface damage reported by 

others. 

^)  Location of Damage Stars 

The damage track is not always continuous; it may start and 

stop several times in the sample.  Often there is a damage 

star on the upstream end of the track. These damage stars 

are localized regions of gross fracture.  Occasionally 

they show discoloration, indicating possible chemical de- 

composition. If the damage track extends upstream of the 

damage star it usually only does so for a very short distance 

compared to the extension downstream from the damage star. 

The location of the damage star is intriguing.  If the 

damage starts in the damage star and then propagates down- 

stream to form the track, why doesn't the damage star cast 

a downstream shadow and prevent the beam from concentrating 

in the thin filament? 

5) Track Propagation Speed 

Since the damage event occurs in nanoseconds, its dynamics 

are difficult to follow. There is experimental evidence 

that the event that forms the track propagates at about 

10 times the speed of sound in the glass. The experimental 

evidence does not show unequivocally that the propagation 

is either unstream or downstream. 

Most of these features are explained qualitatively in the theory of 

electrostrictively driven acoustic beam trapping. 
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5.2 DEFINITION OF THE PROBLEM 

Our purpose is to understand how the acoustic beam trap forms, not 

how the damage occurs.  Therefore we only need consider small acoustic pressure 

changes in the material.  We will see how these lead to a beam instability when 

the power exceeds a certain threshold.  The nature of the instability is such 

that the beam rapidly focuses itself into a thin filament.  The damage occurs 

when the beam is in this trapped condition.  The instability itself can be 

studied by means of a geometric ray tracing equation which includes first order 

diffraction effects.  This bean) tracing equation is equation (2) of Section IV. 

The sound wave satisfies essentially the same conditions as those 

given in Section III, except that it is driven continuously by the light wave, 

rather than running inertially after an impulse.  For a gently focused beam, 

axial components of the sound wave field are negligible in comparison with 

the radial components. 

The desired solution will show a graph of the beam radius plotted 

versus axial length for each of many small time intervals curing the laser 

pulse.  The time distribution of the laser pulse can be assumed to be the 

quartic pulse distribution described in Section IV, since the actual details 

of the shape of the laser pulse do not have too mu^h bearing on the threshold 

for damage and on the time developmei.c .     ...ap. 

5.3 THE COUPLED EQUATIONS 

The souad wave equation is 

2        2-1 2        2-222 
^a/M    + r    &y/& + ?, 0/M    = v      a a/^t 

-   (l/övn^X^ +  2)(n^  -   l)(W/::)q(t;p) 

.   4 a"   (1-r  /a )   exp  (-r  /a ) 

The beam tracing equation is 

22-3       2       22      2      2 2 
^ a/^z = a  (\/2Tmo)  + (a/6no)(no + 2) (no -   I)   h  a(o,z,t)/«r 
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The general solution of these coupled, nonlinear, partial dif- 

ferential equations has been left as an exercise for the computer.  One 

simplification can be made immediately. The beam tracing equation involves 

only the second derivative with respect to r of the on-axis sound wave solution. 

Since the sound wave equation is linear we may take its Hankel transform ana- 

lytically. When z is held fixed, the Hankel transform of Q satisfies an 

ordinary differential equation in t. This ordinary equation may be solved using 

initial values of the Hankel transform, and of its derivative with respect to 

time, and assuming a step-plus-ramp driving function. The solution is then 

found by taking the inverse Hankel transform.  Since the beam tracing equation 

involves only the second derivative of the sound wave amplitude at r = 0, and 

the inverse Hankel transform involves r only as part of the argument of the 

zeroth-order Bessel function, we may pfform the differentiation analytically 

under the integral sign. Thus for each time step and each value of z, the 

sound wave equation can be solved with only one numerical integration. The 

use of a step-plus-ramp driving function allows us to take a much coarser 

time step than we would require if we used an impulsively driven equation. 

5.4 THE STEP-BY-STEP COMPUTER SOLUTION 

The problem is divided up into sections and slices as shown in 

Figure 17.  In its present state of development the computer program can handle 

101 sections. The zeroth section is the entrance face of the solid or liquid 

medium. The initial beam radius and entrance angle are fixed on the zeroth 

section.  Since the solution is  radially symmetrical, it will be the same in 

each radial slice. 

The computer program must store values of a for each of the 101 

sections.  Also for each section, it must store 40 values of the Hankel trans- 

form of the sound wave, and 40 values of the derivative of the Hankel transform 

of the sound wave with respect to time. An array of 101 points is also set 

aside for the second derivative of the sound wave with rrspect to r.  No 

Bessel function storage or Bessel function subprogram is required.  Initially 

the Hankel transform of the sound wave and its derivative with respect to time 
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are set to zero along with the second derivative of the  sound wave with re- 

spect to r.  The solution then proceeds in steps: 

1) Solve the beam tracing equation using the Runge-Kutta method. 

The axial step size in the solution is 1/5 of the interval 

between sections.  Values of the second derivative of the 

sound wave with respect to r are interpolated by Lagrange 

cubic, fitting. 

2) Store 101 values of the beam radius a.  Also save these 

values on tape for later plotting. 

3) If the time has not yet reached 2.Op, the end of the 

laser pulse, advance the time by a small time step and 

obtain the new value of the beam power at that time. 

4) For each section of the beam compute the second 

derivative of the sound wave with respect to r by 

using Simpson intergration. At the same time revise 

the value of the Hankel transform of the sound wave 

and its time derivative for the next time step. 

5) Go to 1. 

The program parameters are the wavelength, the nominal refractive 

ir lex, the initial beam radius and the initial slope of the beam radius at 

the entrance face, and the fraction of pulse power divided by theoretical 

threshold. 

5.5 TYPICAL RESULTS FOR ACOUSTIC BEAM TRAPPING 

Figure 18 depicts acoustic beam trapping when the pulse power is 

3007« of the threshold. There are 11 frames showing the beam radius plotted 

versus axial length for 11 different times during the pulse. The first frame 

shows the path of the beam when the illumination has lust begun.  The sixth 

frame gives the trace when the pulse power is highest.  The 11th frame shows 

the path taken by the light in the trailing end of the pulse. 
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0.6p 

0.8p 
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BQ  1 .2p 
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1.8p 

2. Op 

IGOjim 

0 

Figure 18 

Axial Length 12.5 cm 

Acoustic Beam Trapping at 300 Percent Threshold 
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The action may be interpreted by considering that each section of 

the beam forms an acoustic lens.  Initially the lenses have zero power, but 

sone of vhem build up tocusing ^ower faster than others. The strongest lens 

is formed a»- the focus of the beam.  As its focusing pownr builds up in time 

it causes the beam to be refncused at some distance downstream.  As the 

strength of the acoustic lens continues to build up, its focal length is 

shortened so the second focus moves upstream.  The second focus likewise forms 
I 

a third focus and so on. A little after the laser pulse is half over, three 

definite foci hav. appeared in the 12-1/2CCT region plotted.  At the same time » 

that these acoustic lenses are becoming stronger because of the inertial i 

properties of t.>e material, the laser pulse power is decreasing. The net 

result is regions of sharper av.'1  sharper focus interspersed by regions in which 

the beam radius is increasing.  Eventually the beam will be able to escape 

again to large radii. 
- 

Note in the last frame that the sharpest focus occurs the farthest 

downstream. This is to l-e expected since the focus there is the result of 

two strong lenses upstream. Another important feature is the motion of the 

first locus.  Notice how it ^oves upstream in the beam.  This is because the 

acoustic lenses in the first few sections of the sauple are also developing 

in strength with time. 

Sevei"vl features of the damage phenomenon are insnediatrly ex- 

plain d. The fact that white light is scattered largely from the region of 

the damage stars is easily Si>en to follow from the fact that the highest 

focusing pnd therefore the highest index of refraccion occur at places that 

become damage stars.  Also the track propagates backward, becoming more and 

more sharply defined until it ends in a douge star.  If there are more than 

one, the drmage Swars oc:ur in backward sequence. Th-» farthest downstream 

occurs first, then the next one upstream, then finally the damage star closest 

to the upstream end of the beam. Thus, the damage e^ent does not cast a shadow 

that gets in its own way. 
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The reason why it is difficult to measure the speed of propagation 

of ehe damage event is now apparent. The intensity varies widely and more than 

one focus region may move past the velocity-sensing optics. 

The pit on the exit face of the glass sample is formed by axial 

sound wave components wiiich do become large when the beam is sharply focused. 

There can never be a damage pit on the entrance face.  The entrance conditions 

of the beam are fixed; therefore, the bean cannot focus itself sharply at the 

entrance face of the glass. 

All of the qualitative fea-ures of the phenomenon are a sharp con- 

trast to the phenomenon of Kerr effect trapping, in which there is one focus 

region that moves downstream. 
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SECTION VI 

DERIVATIONS 

A number of derivations are presented in this section.  Each one 

is the analytical solution of some part of the model for acoustic laser beam 

trapping.  Iii many cases the results were evaluated by computer programs.  In 

those cases, an outline of the program and typical plots are given. 

6.1 RADIAL ACOUSTIC WAVES UNDER IMPULSE EXCITATION AND UNDER CONTINUOUS 
DRIVING FORCES 

The crude (but useful) model of Section III divides th. laser pulse 

into two impulses.  The first impulse excites an acoustic wave.  By the time of 

the second impulse the acoustic wave has set up an inhomogeneous refractive in- 

dex distribution.  If the distribution is sufficiently converging, the liphr 

beam from the second impulse will be trappy ' at a small radius. 

The value cf the model lies in the fact that the sound and ligr.t 

equations are decoupled.  The light acts only once, instantaneously, on the 

material-  The resulting sound wave reacts only once, instantaneously, on the 

light beam.  Although this model does not represent the actual phenomenon very 

realistically, it is relatively easy to analyze and it does give ^ood value; 

for the trapping threshold. 

The model can be improved slightly by computing the sound wave 

response to a continuous driving force applied v.y the light for the duration of 

the laser pulse.  In thnt case, the sound wave, as it develops, should focus 

the beam.  To treat the focusing problem, however, it would be necessary to 

calculate the radial sound wave in many cross sections of the beam.  An alter- 

nstive  is to consider the case where the light pulse is so weak that the acoustic 

waves do not focus the beam significantly.  It is then still possible to compare 

the acoustic response to a continuou;; driving force with the Impulse response. 

VJhen we made the calculation, we found that the response was basic- 

ally the same.  There was a phase delay dua to the later arrival of the majority 
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of the light energy, and the amplitude of the response was reduced slightly as 

the pulse half-time increased.  Nevertheless, the same initial focusing dis- 

tribution followed by an outward propagating ripple and slow settling of the 

wake was observed.  These results increase our confidence in the validity of 

the two-impulse model of Section III. 

The Sound Wave Equation: 

Let a be the acoustic compression, and r be the radius in cylin- 

drical coordinates.  The radial sound wave equation becomes 

a2a/ör2 + r'Wör = ö2a/öt2 - (A + Bt)(l - r2) exp(-r2) 

where the driving term has the Laplacian of a Gaussian radial distribution (as 

before) and a step-plus-ramp temporal distribution.  (The general pulse tempo- 

ral distribution may be approximated to any desired decree of accuracy by a 

continuous series of steps and ramps.) The equation is Hankel transformed 

by multiplying it by rJ (r) and integrating from 0 to ".  In general, the Han- 

kel transform of the Laguerre polynomial is 

J exp(-r2)Ln(r
2) rJo(or)dr = (l/2nl) (p/2)2n exp(-p2/4) 

o 

2       2 
Our transform has L.(r ) = 1 - r , so the transformed equation becomes 

aV/at2 + pV =  (A + Bt)   p2  exp(-p2/4)/8 

where 

* m _ r>m 

aip,-) =  I  C7(r,t)r J (pr)dr 
o 0 

is the Hankel transform of the compression and 

(rS c/ar + ao/ar) J (pr)dr = -p o 
o 

is a known trar3formation.  (See Ref. 7). 

The transformed equation is just the one-dimensional wave equation 

with a step-plus-ramp driving -erm.  This forced equation is easily solved by 

Laplace transforms.  (It could even be solved for a unit quartic pulse forcing ^ 

I 
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term. That solution, however, would not be particularly useful later In the 

general problem of acoustic focusing.)  The solution for the Hankel transform 

of the compression is 

0(p,t) = ö(p,0) cospt + [Sc(p,0)/St] p'  sinpt 

-1 2 
-CA(cospt-l) + Bp (sinpt-ot)] e^p(-D A)/8 

given the initial "position" a(p,0) and "velocity" Coc(p,0)/ot] of the compression. 

In order to evaluate the acoustic response to a driving function 

of arbitrary temporal distribution by a continuous step-plus-ramp approximation, 

it is necessary to have the "velocity" as a function of time  also.  Then the 

"position" and "velocity" at the end of the timestep become the new initial 

"position" and "velocity" for the next timestep.  The velocity is obtained by 

simple differentiation: 

ää(p,t)/öt = -C(p,0)  psinpt + [oc(p,0)/St] cospt 

-[-Apsinpt + B(cospt-l)] exp(-p /4)/8 

Integral Representation of the Sound Wave Solution: 

The acoustic compressior <s now obtained by the inverse Hankel 

transform. 

a(r,t) 
r - 
' c(p,t) pJ (pr)dp 

*.' o 
o 

= J  "iöXp^O)  pcospt + [>ä(p,0)/öt] sinpt 
o 

-[Ap(cospt-l)  + B(sinpt-pt)]  exp(-p /4)/8J> J (pr)dp 

We note that the term c(p,0) is multiplied by p in the Integral.  Thus, if Cp 

is always evaluated, rather than c alone, there will be no division by zero 

at p=0. 

Before the start of the optical pulse at t=0, the medium is at 

rest.  Thus, c(r,0) = a(p,0) = 0.  In thlPcase of an extremely short optical 

pulse there may be an initial velocity at t=0, as in Sect'.on III.  The initial 

velocity due to an impulse of Gaussian spatially distributed light i.c 
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aa(r,0)/at = (1-r2)  exp(-r2) 

with the Hankel transform 

_ 2      2 
ac(p,0)/at = p exp(-p /4)/8 

as before. 

Method of Computation: 

The integral representation of the sound wave solution above was 

checked by computing and displaying the wave.  This computer check was impor- 

tant because the integral representation is a starting point for further reduc- 

tions to the computing formulas used in the beam tracing program. 

The only input variable for the computation is the pulse half-time, 

measured in units of the material time constant.  Time runs from 0 through 10 

material tine constants in steps of 0.1 time constant.  The unit quartJc pulse 

starts from zero at T=0 and is evaluated after each tiraestep, for finite pulse 

half-times.  If the pulse half-time is zero, the program computes and stores the 

initial velocity 3ä(p,0)/öt as above. 

For every pulse halftlme entered, the program computes a movie of 

101 frames.  In each frame the wave amplitude is plotted at 21 points along the 

radius scale, from 0 to 5 beam radii.  After computation the maximum amplitude 

range was found to be -0.05 to +0.34 for the Impulse-excited wave, and less for 

other excitations. The frame consists of 23 words of 24 bits each. The first 

word contains the number of points, not counting the 0th point; it is 20 in this 

case. The next word contains the number of repetitions tor the frame, equal 

to the ratio of the timestep for this frame to the shortest timestep in the 

movie.  Since all the timesteps are equal in this program, the number of repe- 

titions is 1 for each frame. The remaining 21 words contain the points packed 

for oscilloscope display.  The leading 4 bits contain a code number 7, causing 

the oscilloscope to draw intensified vectors from the last point displayed to 

the new point. The next 10 bits specify the scaled value of the radius, and 

the 10 xeast significant bits are the scaled value of the amplitude.  The words 

are written in BCD coding, 16 octal fields 8 characters wide, without spaces. 

A graph of every 4th frame was also printed as a quick check on the computation. 
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The Bessel fu ction was computed according to a polynomial approxi- 

mation (Rcf. 4). For argument Z less than or equal to 3, 

A = (Z/3) 

J (Z) = 1 + A(a + A(a1 + A(a. + A(a. + A(a. + AaJ)))). 
o oi2345 

For larger arguments, 

A = 3/Z 

J  (Z)  = (b    + ACb.  + A(b9 + A(b    + A(b    + A(b    + Ab )))))). 
o O1ZJ45D 

•   cos(Z + c    + A(c    + A(c    + A(c,  + A(c,   + A(c    + Ac,))))))Z 
-1/9 

The coefficients are; 

a = -2.2499997 
o 

a = +1.2656208 

a2 = -0.3163866 

a = +0.0444479 

a, - -0.0039444 
4 

+0.0002100 

b .= +0.79788456 
o 

b1 = -0.00000077 

b2 = -0.00552740 

b = -0.000C9512 

b, -  +0.001372/3 

b = -0.00072805 

hc =  +0.00014476 
6 

c = -0,78539816 
o 

c = -0.04166397 

c2 = -0.00003954 

c„ = +0.00262573 
J 

c, = -0.00054125 
4 

c5 = -0.00029333 

c£ = +0.00013558 

-8 
These formulas are supposed to give correct results to within ±5 x 10  absolute 

error. 

At first we attempted to evaluate the integral representation with 

a 21-sample Simpson approximation. However, the solution did not vanish suf- 

ficiently as T approached 10.  After the ripple passed out off the movie to the 

right and the wake settled, a low-spatial-frequeucy ripple seemed to move back 

toward the left.  This is explained as insufficient cancellation by the sinpt 

and cospt terras, which have wavelengths of 0.628 at T=10.  For a 21-sample 

Simpson approximation over the range 0 to 5 the sampling interval is 0.25, or 

2.5 samples per wavelength.  Therefore, we changed to a 41-samplc Simpson 

approximation over the same range, taking 5 samples per wavelength, to achieve 

satisfactory results. 
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When we speak of a 41-sample Simpson approximation we are including 

the sample at zero, which does not contribute to the Integral.  Thus, in the 

entire movie 40 samples of the integral were ,_aken to evaluate each of 21 

points in each of 101 frames, 40 x 21 x 101 = 84,840 samples in all. Each 

sample requires a value of the Bessel function.  To save running time, we set 

up a table of the 41 x 21 = 861 values of the Bessel function actually used. 

Let i be the index for r values, and let j be the index for p values.  Then 

i = 0,1,..,,20 

j = 0,1,...,40 

r, = 0.25i, 
i 

n = 0.125J, 

Jij = Jo(ri0i) = Jo(
0-031251J) 

Clearly, J. . = J.., and J ^ = J,  = 1, so the table contains many duplicate ij   ji      oj   io   ' J       r 
entries.  However, we could not think of a simple indexing scheme to reduce 

the number of entries by eliminating redundancy, so we stored the entire table 

as it stands in computer memory at the start of the program.  Various compli- 

cated indexing schemes are possible, of course, but none of the ones we thought 

of could be computed quirkly. 

Three additional working arrays are required to compute the integral. 

Each array has 41 elements.  It is necessary to save the values of pa(p,t = 

timestep)  and ?yj(0>t=tijnestep)/^t after each frame, in order to have O<T(O,.0) 

and Sa(o>0)/^t for the next frame. Also, the kernel of the integral (apart 

from the factor J (pr)) does not  involve r, so 41 samples of it may be saved 

and used repeatedly in each frame.  It is useful to include the Simpson weight- 

ing coefficients as part of the kernel. 

Finally, the 21 points in each frame were stored so that they could be 

written as a single record for each frame. 

The program is carried out ii steps as follows.  Here the equal sign 

means place the value of the expression or. the right into the cell named on the 

left. 

1.  Create the Bessel function table. 

J  = Jo (ijdodr), i = 0,1,...,20; j = 0,1,...,40 

where dp =  1/8  and  dr  =  i/4. 
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2. Read p, the half-time of the pulse.  If there are no more 

values of p to read, stop. 

3. Clear working arrays. 

t = 0; h. = k. = 0,  j = 0,1,...,40 
j   J _ 

where t is the time, h. is a(p,,0) 
J      j 

and k. is the jth sample of the kernel. 

4. Set the initial Velocity". 

d. =0 if the p is non-zero 
J   2     2 

d, = p exp(-pi/4)/8, j = 0,1,...,40 is p is zero 

where d. is äc(p.,0)/ät 
J      "* 

5. Go to 9. 

6. Compute the step and ramp coefficients, 

a -  q(t-dt;p), b = [q(t;p)-a]/dt 

where q is the unit quartic pulse of Section IV, and dt 

is the timestep, 1/10. 

7. Compute the kernel. Also, compute the values of "position" 

and "velocity" required for the next timestep. 

Do the next 6 replacements successively as j takes on the 

values 1,2,...,40. 

e = exp(-p2/4)/8 

f = ap (cosp dt-i) + b(sinp dt-p.dt) 

g = h.cosp.dt + d.sinp.dt 
J   j     J   J 

k = (1/3) dp 2(jmod2+l)g 

ef 

d. = -h.sinp.dt + d.cosp.dt - eC-an.sinp.dt + b(cosp,dt - 1)] 

hj-S 

Finally, adjust the end sample of the kernel. 

k. 
40 k40/2 

8.  Compute the sound wave solution at 21 radial points. 

Simultaneously print them every 4th timestep. 
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Sl =Zit0o    JlJkj' 1 " 0,1,...^0 

9.     Pack the points as described before into 21 words and write 

them on magnetic tape. 

10.  Take the next timestep.  If this is the last frame, go to 2. 

Otherwise, 

t = t + dt 

and go to 6. 

This 87-statement SDS Fortran IV program required 1 minute 54 

seconds for compilation and 4 minutes 12 seconds to load and run four cases 

with p equal to 0, 0.5, 1, and 1.5.  Later we uqed a second program to place 

corresponding frames of the four movies in four quadrants of a single frame 

of a new movie.  The latter movie permitted us to make phase and amplitude 

comparisons for the four cases. 

The results are plotted and reproduced in Figures 19 through 24, 

for t = 0 to t = 7.1.  The upper left quadrant of each frame shows the response 

for p = 0, the upper left for p = 0.5, the lojer left for p = 1, and the lower 

right for p = 1.5. 

6.2 THE LOCAL LENS ESTABLISHED BY A SINGLE LASER IMPULSE 

A laser pulse whose half-time was negligible compared with the 

material time constant would pass through a transparent dielectric on a hyper- 

bolic path without being focused appreciably by electrostriction, because of 

the time required for acoustic compression.  Nevertheless, the medium would 

be set into motion, and the focusing power would develop with time.  An analysis 

of this model shows how a single Impulse can set up a localized acoustic lens 

at the initial focus of the laser beam.  Because the acoustic lens is localized. 

It can cause a second focus for the laser beam, provided that the next laser 

impulse comes before the sound wave has subsided.  This behavior may be con- 

trasted with the behavior in Kerr effect trapping, where only one focus would 

occur under such conditions. 

The second term on the right-hand side of equation (2) of Section 

IV is the focusing term in the beam tracing equation. 
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Four Sound Waves, T =0.0 to 1.1 
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2 ? 
(a/n ) ö n(0,z,t)/or" 

Derivatives of the; refractive index are proportional to the acoustic compression. 

These can be evaluated analytically at r = 0. The result will be the dependence 

of the focusing term on the initial hyperbolic beam radius. 

We are therefore interested in the second derivative of the acous- 

tic compression along the beam axis as a function of z and t.  This quantity 

is proportional to the coefficient of the focusing term. We will use the 

integral representation of the compression when excited only by an initial 

impulse.  To get the full dependence on beam radius, we will work the problem 

through in unsealed, physical coordinates. 

The path taken by the beam through a homogeneous medium is 

a(2) = [(a + a,z)2 +  (\z/2itn a )2]1/2 
0    1 o o 

as in equation (3), Section IV.  The laser beam intensity is 

I(r,z,t) - (W/jra2) exp(-r2/a2) [6(t) + 6<t-5p/8)]/2 

where the spacing 5p/8 between delta functions corresponds to placing an impulse 

at the centroid of each half of the unit quartic pulse. 

The force exerted on the medium by elt-trostriction, assuming the 

Clausius - Mosotti relation applies, is 

f = (n2 + 2) (n2 - 1) V I/3n c 
0        0 o 

The velocity field after the first Impulse is 

o+ 

J   f dt = g U (l,2,0+) 

where g is the average density of the medium, by conservation of linear momen- 

tum, and the compression is the negative divergence of the displacement, 

C = - V • u 

Thus, in cylindrical coordinates, taking the time derivative of the above 

equation. 
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oa(r,z,0+)/at = - V •  u  (r,z,0+) 
0+ 

=   -(n^ + 2)(n    -1)  V     [ i dt/3 n eg 
0 0 & O 

= -[W(n2 + 2)(n2 -  l)/6n cgna2] 
0 0 O 

/r"1^ '    2'2 ä exp(-r /a')/ör]/arj- 

-  (2W/3J? nocga4)   (n2 + 2)   (n2 -  1)   (1 - r2/a2)exp(-r2/a
2) 

The Hankel  transform is easily evaluated as 

öä(p,2,0+)/öt =  (2W/3irn cga2)   (n2 + 2)   (n2  -  1)   • 
0 0 0 

to 

J   (r/a)  JoC(ap)(r/a)3   (1 - r2/a2) exp(-r2/a2)  d(r/a) 
o 

= (W/12 n n eg)   (n2 +  2)   (n2  -  1)  p2 exp(-a2p2/4) o o c 

The material was in a state of rest before the initial impulse, so o(p,z,0+) =• 0. 

Also, there is no forcing term after the impulse, «s the intensity drops to zero 

again, so A = 3 = 0. Thus, by substitution in the integral representation of 

the solution we obtain 

r" 
a(ryz,t) = j [afT(p,a,0+)/at] 3in(pvt) J (0r) dD 

o 0 

m 
"    2     2 2 

= C j p exp(-£' p /4) sin(pvt) J (pr) dp 
o 0 

where we have inserted the velocity of sound v and 

C = (W/i2Trn cgv) (n2 + 2) (n2 - 1) 
0       0        o 

2 2 
We may now obtain d  a(0,x,t)/or by differentiating under the integral sign. 

We have 

and 

rJo(pr)/*r = [J2(pr) - Jo(pr)] p//2 

J2(0) = 0, Jo(0) = 1. 
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This leads ^o 

,  4 2 2, 
ö r(^z,t)/ar « -(C/2) J p^ exp(-a pV4) sin(pvt)dp 

The remaining integral is just a Fourier transform. A useful property of 

Fourier transforms permits us to simplify the integral further.  If 

F(y) - I f(x) sin(xy) dx for y > 0 

2m 
is the Fourier transform of f(x), then the Fourier transform of x  f(x) is 

.m ,2m im 
(-1)  d  F(y)/dy'' .  Thus we need o.-'.y evaluate 

OS on 

f 22 r r 22 
K =   exp("a p /4) sin(pvt) dp = Im j j exp(-a o"/** +  iovt)dp 

o o 

where Imi. ] denotes the imaginary part.  By completing the square in the 

exponential and shifting the variable we can reduce the remaining part of 

the integral to a finite interval. 

K = Im ^ J exp[- (ap/2 - ivt/a)2J dp exp(-v2t2/a2)' 

Let P = ap/2 - ivt/a; then 

R  Im^(2/a) exp(-v2t2/a2)  . fc/ exp(--2)dei ^ >i -ivt/ a        " -' 

-ivt/a 

= Im ^(2/a.,> exp(-v2t2/a2)[j exp(-"2)dF - j    exp(-P2)d'r | j 

Now let T| - -?/l and take only the imaginary part 

•vt/a 
2 2 2 

K = (2/a) exp(-v t /a ) I   expCrf) df] 

With the above result, the focusing term becomes 

ö2a(0,z,t)/ör2 - -(C./2)dVd(vt)4 
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It is now convenient to change .o scaled coordinates. We l^t T = vt/a so 

S o(0,z,t)/^r = -Ca' d |_exp(-T ) j exp(il )dr! i/dr4 

o 

•y 

= -Ca'5 20T - 8T
3
 + (12 - 48T

2
 + 16T4)exp(-T2) •   exp(i12)dV 

o 

For very small values of T we may replace the exponentials by 1 and drop all 
2 

terms of order T or less. 

Then, 

^2cr(0,2,t « a/v)/ör2 3S -8Ca"5T = -SCvt a"6 

As the terms in higher powers of T become dominant, the coefficient of the 

focusing term becomes even more localized near the original focus. 

2   rT       2 
The Dawson integral D(T) = exp(-T ) J  expOl )dTi is tabulated (Ref. 4, 

p. 319).  For reference, other derivatives are as follows: 

d2D/dT2= -2T + (4T2 - 2)D 

d3D/dT3=: 4T'd - 4 + (12T - 8T3)D 

d4D/dT4=- 20T - 8T3 + (12 - 48T2 + 16T4)D 

An asymptocic expansion for D is 

Lim D(T - •)  = -i exp(-T2) /7h +  (1/2T)  [l + 1/2T
2
 + 1  •   3/(2T2)2 

+ 1  •   3  •   5/(2T2)3 H...] 

Each of the derivatives of D becomes 0 as T approaches infinity because the 

polynomial terms are cancelled bv subtraction.  Thus, the formulas are mathe- 

matically correct, but inconvenient for computation for large values of T. 

The coefficient of the focusing term was computed and plotted 

versus z in Figure 25.  The function of a was given by equation (3) of Section 

IV, plotted in the first frame of Figure 14.  In Figure 25, reading left to 

right and top to bottom, we see the local development of the focusing coeffi- 

cient as T runs from 0 to 2.  In the two-impulse model of trapping, the second 
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Figure 25. Coefficient of the Focusing Term Plotted Versus Axial Length 
At Various Fractions ; f the Material Time Constant, After an 
Initial Impulse 
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Impulse could arrive anytime before T - 1-2 and still pass through a converging 

acoustic lens.  If ths pulse half-time vere much longer, it would first be 

focused, then defocused. 

In the plot the coefficient at the ir.itial focus appears to 

develop with a phase just twice as fast as the coefficient at the left-hand 

edge, and the amplitude ii' 32 tiiT>3 greater.  This is because of the Z to 1 

ratio of values of a. 

The Dawson in'egral was computed by running Simpson integration, 

usi.ng a step size of 0.0005.  (A step size  of 0.05 was too large for stable 

computation beyond about T = 4,) 

Let 

O.OOlj 

d = j    expCn )d'n 

Thc>n 

J  o 

d *= 0 
o 

t - O.OOlj  d - d   + (0.0005/3) {expC(t-O.OOl)2] + 4 exp^t-O.OO'5)2] + exp(t2)} 

defines the running Simpson integral used. 

6.3  STEP-Bif-STEP SOLUTION OF THE COUPLED EQUATIONS 

The solution of th» coupled sound and beam radius equations has al- 

ready been discussed in Section V.  The actual formulas used by the computer 

progiam will be presented here. 

The sir^p-plus-ramp driven sound wave solution required becomes 

00 
? 2 2   r 

ö c(0,z,t)/or = -(1/2) j p |y(p,z,0)pcospt + [öc(p,z,0)/9t3 sinpt 
o 

2 2 2 "^ 
-(a /8) exp(-a 0 /4) [Aap(cos aot-1) + B(sin apt-ao*:) j [dp 

ä(p,z,t)p = 7(p,z,0yp cospt + [a5'(p,z,0)/at] sin pc 

9 9 7 
-(a /3) exp(-a p /4)CAap(cos apt-1) + B(sin ant-apt)] 
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?«Ö(p,,2>t)/öt  = -G(p,z,0)p  sin pt + [^C(p,2,0)/^tj   cos  pt 

-(a /8) exp(-a p /4)r-'Aap sin apt + B(cos apt -l)j 

These may be evaluated by Simpson integration as described before in Subseccion 

6.1.  The equations now include a = a(2,t), which is ob;qined by beam tracing 

before each timestep.  The coefficient of electrostriction can be entered sep- 

arately, because the sound wave equation is linear. 

For the Runge-Kutt  solution of the beam tracing equation it was 

necessary to interpolate between points where the focusing term was known.  We 

used the Lagrange cubic fitting formula.  If interpolation is required between 

X and X  ,, where Y  ,, Y , Y  .  Y   are known ordinates for equally spaced 
n     n+1       n-1  n  n+1, n+z 
abscissas, and £ = (X-X )7h is the fraction of the distance from the last abscissa 

'    '     n 
to the point of interpolation divided by the step size, 

then, 

Y(X + ?h) = -E(5-l)(?-2) Y  ./e + (?2-l)(?-2) Y /2 s n n-i n 

-?(2+l)(?-2) Yn+1/2 + ?(
F2

-1) Yn+2/6 

See Ref- 4, pp. 878f. 
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